

The reactions of singlet oxygen with β-chlorosulfides. The role of hydroperoxy sulfonium ylides in the oxidative destruction of chemical warfare simulants

Alexei Toutchkine and Edward L. Clennan *

Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA

Received 20 May 1999; revised 25 June 1999; accepted 28 June 1999

Abstract

The reactions of singlet oxygen with 2-chloroethyl ethyl sulfide and 3-chlorothiane are reported. In both cases elimination of HCl to produce α,β -unsaturated sulfoxides is observed. The experimental results implicate a hydroperoxy sulfonium ylide as a transition state or intermediate in an E2 or E1cb elimination, respectively. © 1999 Elsevier Science Ltd. All rights reserved.

The destruction of chemical weapon stockpiles poses a significant challenge to the chemical community which must design environmentally benign processes to achieve this internationally agreed upon goal. The destruction of mustard gas has previously focused on oxidative and/or hydrolytic processes. We report here an alternative process which involves the use of singlet oxygen as a decontaminant. Singlet oxygen is a potent oxidant which is known to react with sulfides to produce both sulfoxides and sulfones. We demonstrate its use with two mustard gas simulants, 1 and 3, and we provide experimental details which have a direct bearing on the proper description of the sulfide singlet oxygen reaction surface. We have a direct bearing on the proper description of the sulfide singlet oxygen reaction surface.

Irradiation of CDCl₃ solutions containing 2-chloroethyl ethyl sulfide, 1, and 10^{-4} M tetraphenylporphyrin under a constant stream of O_2 with a 600 W tungsten lamp at 25°C through a saturated NaNO₂ filter solution resulted in formation of 1SO and ethyl vinyl sulfoxide, 2. The formation of 2 provides compelling confirmation for the recent suggestion that the hydroperoxy sulfonium ylide (B in Scheme 1) is a precursor to sulfoxide.⁴

In the absence of a β -leaving group hydroperoxy sulfonium ylide, **B**, reacts with starting material to generate the sulfoxide product. During photooxidation of 1, however, rapid loss of chloride generates ion pair **C** which ultimately acts as an oxidant towards 1 to give a 1:1 mixture of 1SO and 2. This scenario was experimentally confirmed when the reaction was carried out in the presence of Na₂CO₃ as shown in Table 1. In the absence of an acid trap 1SO was increased at the expense of 2 and the photooxidation was more efficient. This is consistent with protonation of the persulfoxide, **A**, by adventitious HCl to give

^{*} Corresponding author.

Scheme 1.
Table 1
Reaction of 1 with singlet oxygen^a

[1], moles/l	Irradiation time, s	% conversion	% 1SO	% 2
0.051	210	64.0	87.4	12.6
0.051 ^b	210	31.0	50.7	49.3
0.061 ^b	300	47.0	51.7	48.3
0.27 ^{b,c}	300	24.3	54.7	45.3
0.54 ^{b,c}	300	14.9	54.7	45.3

a. In CDCl₃ at 25°C. b. In a Na₂CO₃ slurry. c. A small amount (<5%) ClCH₂CHClSEt formed.

RR'S⁺-OOH which acts as an oxidant towards 1 ultimately suppressing both physical quenching, k_q, and formation of 2.⁵

Formation of hydroperoxy sulfonium ylide, ${\bf B}'$, by hydrogen abstraction from the ethyl group is unlikely to be competitive with formation of ${\bf B}$ because of the greater acidity of hydrogens adjacent to chlorine and is consequently not depicted in Scheme 1. Reaction of 1 with ${\rm Cl_2}$ or N-chlorosuccimide also generates the ylide adjacent to chlorine giving >80% 1,2-dichloroethyl sulfide and <20% 1-chloroethyl 2-chloroethyl sulfide.

The mechanism in Scheme 1 also predicts that trapping of persulfoxide A with Ph_2SO would enhance the formation of $\mathbf{1SO}$ as given by Eq. 1. On the other hand, trapping of ion pair C would lead to enhanced formation of 2 as given by Eq. 2. Both predictions were experimentally verified as shown in Fig. 1. The value of k_{PhS}/k_S of 0.11 derived from the slopes of the Ph_2S trapping plot reflects the diminished nucleophilicity of Ph_2S in comparison to 1 and can be attributed to both steric and electronic factors.

$$\frac{[1SO]}{[2]} = \frac{k_{PhSO}}{k_X} . [Ph_2SO] + 1$$
 (1)

$$\frac{[2]}{[1SO]} = \frac{k_{PhS}}{k_S} \cdot \frac{[Ph_2S]}{[1]} + 1$$
 (2)

Figure 1. Table 2 Reaction of 3 with singlet oxygen^a

Irradiation time (m)	%Conversion	% cis-3SO	% trans-3SO	% 5	%6
10	5	39	28	33	-
30	14	31	37	25	7
60	23	30	39	21	10
90	28	27	41	20	12
120 ^b	36	28	42	16	14
180 ^b	44	28	42	14	16

a. Photooxidation of 0.1M 3 in a CDCl₃/Na₂CO₃ slurry at 25°C. b. A small amount (< 3%) of 3-chlorothiane-dioxide forms at long irradiation times.

3-Chlorothiane, 3, exists in equilibrium with a small amount of 2-(chloromethyl)thiolane, 4. Photo-oxidation of this mixture under the same conditions utilized for photooxidation of 1 generated four major products in the ratios given in Table 2.⁶ The formation of the α,β -unsaturated sulfoxides, 2-methylenethiolane-oxide, 5, and dehydrothiane oxide, 6, is compelling evidence for participation of hydroperoxy sulfonium ylides in this complicated reaction.

The absence of 4SO in the 3/4 photooxidation reaction mixture suggests that hydroperoxy sulfonium ylide D undergoes elimination to give 5 more rapidly than it can be reduced with either 3 or 4. In stark contrast, the observation that ([5]+[6])<([cis-3SO]+[trans-3SO]) suggests that hydroperoxy sulfonium ylide E undergoes a slow elimination relative to reduction. This is a consequence of the preference for the equatorial disposition of the chloride in E placing it in an unfavorable geometry for elimination.

In conclusion, an examination of the reactions of ${}^{1}O_{2}$ with two chemical warfare simulants has resulted in the discovery of a new singlet oxygen 'oxidative elimination' reaction to give α, β -unsaturated sulfoxides. It also provides an example of a new reaction channel available to hydroperoxy sulfonium ylides.

Acknowledgements

We thank the National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for their generous support of this research.

References

- 1. Menger, F. M.; Park, H. Recl. Trav. Chim. Pays-Bas 1994, 113, 176-180.
- 2. Schenck, G. O.; Krauch, C. H. Angew. Chem. 1962, 74, 510.
- Clennan, E. L. In Advances in Oxygenated Processes; Baumstark, A. L., Ed.; JAI Press: Greenwich, CT, 1995; Vol. IV, pp 49–80.
- 4. Jensen, F.; Greer, A.; Clennan, E. L. J. Am. Chem. Soc. 1998, 120, 4439-4449.
- 5. Bonesi, S. M.; Mella, M.; d'Alessandro, N.; Aloisi, G. G.; Vanossi, M.; Albini, A. J. Org. Chem. 1998, 63, 9946-9955.
- 6. trans-3-Chlorothiane-S-oxide (trans-3SO). White crystals, mp 62–63°C. 1H NMR (400.13 MHz, CDCl₃) δ 1.75–3.45 (m, 8H), 4.69 (tt, $^3J_{H-H}$ =11.3 Hz, $^3J_{H-H}$ =3.7 Hz, 1H, CHCl). ^{13}C NMR (100.61 MHz, CDCl₃) δ 17.48(C-5), 35.87(C-4), 45.49(C-6), 51.02(C-3), 53.45(C-2). Anal. calcd for C_5H_9 ClOS: C, 39.35; H, 5.94. Found: C, 39.11; H, 5.96. cis-3-Chlorothiane-S-oxide (cis-3SO). White crystals, mp 95–96°C. 1H NMR (400.13 MHz, CDCl₃) δ 1.56–3.79 (m, 8H), 3.93 (tt, $^3J_{H-H}$ =11.8 Hz, $^3J_{H-H}$ =3.7 Hz, 1H, CHCl). ^{13}C NMR (100.61 MHz, CDCl₃) δ 19.91(C-5), 35.36(C-4), 50.80(C-6), 51.21(C-3), 59.70(C-2). Anal. calcd for C_5H_9 ClOS: C, 39.35; H, 5.94. Found: C, 39.54; H, 6.06. 3-Chlorothiane-S-S-dioxide. White crystals, mp 78–79°C. 1H NMR (400.13 MHz, CDCl₃) δ 1.75–3.45 (m, 8H), 4.26 (tt, $^3J_{H-H}$ =11.9 Hz, $^3J_{H-H}$ =3.8 Hz, 1H, CHCl). ^{13}C NMR (100.61 MHz, CDCl₃) δ 21.6(C-5), 34.63(C-4), 50.18(C-6), 52.12(C-3), 59.37(C-2). 2-Methylenethiolane-S-oxide (5). Colorless liquid. 1H NMR (400.13 MHz, CDCl₃) δ 2.15–3.03 (m, 6H), 5.79 (s, 1H, =CHH), 5.96(s, 1H, =CHH). ^{13}C NMR (100.61 MHz, CDCl₃) δ 23.32(C-4), 30.45(C-3), 53.38(C-5), 120.21(CH₂=), 145.81(C-2). Anal. calcd for C_5H_8 OS: C, 51.69; H, 6.94. Found: C, 51.76; H, 7.04.